skip to main content


Search for: All records

Creators/Authors contains: "Xiong, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination.

     
    more » « less
  2. Abstract

    With the wide deployment of rechargeable batteries, battery degradation prediction has emerged as a challenging issue. However, battery life defined by capacity loss provides limited information regarding battery degradation. In this article, we explore the prediction of voltage‐capacity curves over battery lifetime based on a sequence to sequence (seq2seq) model. We demonstrate that the data of one present voltage‐capacity curve can be used as the input of the seq2seq model to accurately predict the voltage‐capacity curves at 100, 200, and 300 cycles ahead. This offers an opportunity to update battery management strategies in response to the predicted consequences. Besides, the model avoids feature engineering and is flexible to incorporate different numbers of input and output cycles. Therefore, it can be easily transplanted to other battery systems or electrochemical components. Furthermore, the model features data generation, that is, we can use the data of only one cycle to generate a large spectrum of aging data at the future cycles for developing other battery diagnosis or prognosis methods. In this way, the time and energy consuming battery degradation tests can be sharply reduced.image

     
    more » « less
  3. null (Ed.)
  4. Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    Here, we report template‐assisted assembly of emissive carbon quantum dot (CQD) microcrystals on organized cellulose nanocrystals templates at the liquid–air interface. This large‐scale assembly is facilitated by the complementary amphiphilic character of CQDs and cellulose nanocrystals in the organized nematic phase. The resulting large microcrystals up to 200 μm across show unusually high emission that is not observed for limited CQDs aggregates. The dense crystal packing of CQDs in the layered fashion suppresses local molecular rotations and vibrations, thus restricting the intermolecular energy transfer and corresponding quenching phenomena. The as‐prepared crystals are mechanically stable and can be exploited for recyclable catalysis, enabling applications beyond the individual nanoparticles or disordered aggregates. The ligand‐templated assembly can be used to diversify CQD crystal architectures to guide formation of fibers, microplates, and micro‐flowers.

     
    more » « less